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ABSTRACT
The growing complexity of large language models (LLMs) has
driven advancements in natural language processing (NLP) but
at the cost of substantial computational and data demands, partic-
ularly for fine-tuning on tasks requiring logical reasoning. This
study explores how different data sampling strategies can improve
the efficiency of fine-tuning while maintaining high performance
on logical reasoning tasks. We propose a sampling method called
data ablation-guided sampling, where we ablate source subsets from
the training dataset to determine which data sources are most im-
portant to boosting performance on reputable logical reasoning
benchmarks. Our results show that statistical sampling methods
like stratified and random sampling produce comparable outcomes
to full-dataset training, while using only 25% of the data, signifi-
cantly reducing resource consumption. Key subsets identified using
data ablation-guided sampling, such as MATH and Leetcode, were
flagged as particularly impactful for improving performance on
reasoning tasks. These findings suggest that targeted sampling can
lower the barriers to fine-tuning LLMs by reducing costs and envi-
ronmental impact, while still supporting high-quality outcomes. Fu-
ture research could extend these techniques to new tasks, datasets,
and model sizes, further enhancing their practical value for NLP
applications.

1 INTRODUCTION
In the realm of natural language processing (NLP), large language
models (LLMs) have revolutionized numerous applications. How-
ever, their massive size and complexity come with significant draw-
backs – most notably, the high computational costs associated with
training and evaluation. These immense data requirements and
extensive computational resources create barriers to both develop-
ment and experimentation, limiting the accessibility of cutting-edge
AI advancements.

As LLMs become increasingly sophisticated, their ability to suc-
cessfully complete complex reasoning tasks is a critical next step in
their evolution. These tasks prompt models to process and interpret
information deeply, going beyond pattern recognition or syntac-
tic understanding. Logical reasoning, in particular, represents a
significant leap towards more human-like cognitive capabilities,
enabling applications that demand rigorous analytical thinking and
precise decision-making. This trend is evident in the direction taken
by many state-of-the-art models, such as OpenAI’s Strawberry o1
[5], which prioritize enhancements in reasoning and analytical
performance.

Despite these advancements, fine-tuning LLMs for domain-specific
or reasoning-focused tasks remains a computationally intensive
and data-demanding process. While techniques such as Low-Rank

Adaptation (LoRA)[2] and Parameter-Efficient Fine-Tuning (PEFT)
have mitigated some challenges, they are not sufficient to overcome
the inherent inefficiencies of using massive datasets for fine-tuning.
This raises our research question: Canwe identify and prioritize spe-
cific subsets of data that are most instrumental in enhancing model
performance on logical reasoning benchmarks? By addressing this,
we aim to make fine-tuning both faster and more resource-efficient
without compromising the quality of the models.

The capacity to fine-tune LLMs efficiently while maintaining
high performance is critical for several reasons. Firstly, it addresses
the significant financial and environmental costs associated with
extensive computational resources. Reducing dataset sizes for both
training and evaluation can substantially lower the computational
footprint, democratizing access to powerful models and making
advanced NLP research more accessible to a broader range of
researchers and institutions. This inclusivity accelerates overall
progress in the field, enabling institutions with limited resources
to contribute to cutting-edge developments.

Secondly, efficient fine-tuning facilitates quicker iterations and
experimentation cycles, which are essential for rapid prototyping
and adaptability to new data. By leveraging various data sampling
techniques, such as statistical methods and strategic data ablation,
we could maintain or even enhance model performance despite
using reduced datasets. These techniques ensure that computa-
tional efficiency does not come at the expense of model quality or
reliability.

Through this research, we aim to identify and evaluate various
sampling methods to determine their impact on the efficiency and
effectiveness of fine-tuning LLMs for logical reasoning tasks. By do-
ing so, our project seeks to contribute valuable methodologies and
insights to the broader AI and machine learning communities. The
successful implementation of these strategies has the potential to
transform practical applications that require sophisticated reason-
ing capabilities, paving the way for more accessible and sustainable
advancements in artificial intelligence.

2 SAMPLING METHODS
In this section, we will describe the different data sampling methods
we used to gather subsets for fine-tuning. We sampled from the
Open-Platypus dataset, an open-source dataset consisting of logi-
cal reasoning data points from 11 different source datasets. These
sources focused on topics such as high school math and science
problems and Leetcode questions. We experimented with both sta-
tistical sampling methods and data ablation-guided sampling to
compare the complexity of the sampling algorithms relative to the
performance and efficiency of the fine-tuned LLMs. Our goal is to
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identify the most effective subsets of this diverse dataset to enhance
model efficiency and performance.

2.1 Statistical Sampling
Here we outline the statistical sampling methods that we used on
the training dataset: simple random sampling, stratified sampling,
and cluster sampling, and discuss their relevance in the context of
our research.

These statistical sampling methods provide baselines that we
can compare our ablation sampling method against. Simple ran-
dom sampling provides a naive method which can be used for
performance comparison without taking data sources into account.
Stratified sampling ensures proportional representation from ev-
ery data source, showing what performance can be expected when
weighting each subset of data in the training set equally. Lastly, clus-
ter sampling demonstrates the performance that a finetuned model
achieves when trained on only a few of Platypus’ data sources.

2.1.1 Simple Random Sampling. Simple random sampling (Figure
1) is a fundamental statistical method where each data point in the
dataset has an equal probability of being selected. This approach
provides a baseline by giving an unbiased representative sample
of the entire dataset. It is particularly useful in scenarios where
the dataset is relatively homogeneous. In our study, random sam-
pling allowed us to create a data subset that reflects the broader
characteristics of the Open-Platypus dataset. By analyzing model
performance on random samples, we can investigate the benefits
and potential limitations of more advanced sampling techniques
relative to this simple method.

In our experiments, we selected a random sample containing
25% of the data points from the overall dataset.

Figure 1: Simple random sampling from a dataset with 3
labels. This example selects 50% of the data points.

2.1.2 Stratified Sampling. Stratified sampling (Figure 2) enhances
data representation compared to random sampling by dividing the
dataset into distinct "strata" based on a specific criteria and sam-
pling proportionally from each one. In the context of our research,
the Open-Platypus dataset was divided according to its 11 source
datasets. This approach ensures balanced representation from each
source, which is important for maintaining diversity and preventing
bias towards any single sub-dataset. We hypothesized that stratified
sampling is particularly beneficial for logical reasoning tasks in our

experiments, as it allows the model to learn from a wide range of
data points collected from each of the 11 sources, improving its
ability to generalize across many scenarios.

In our experiments, we stratified by the 11 different source
datasets within Open-Platypus using the provided labels, and se-
lected 25% of the data points from each one.

Figure 2: Stratified sampling from a dataset with 3 labels.
This example selects 50% of the data points from each strata.

2.1.3 Cluster Sampling. Cluster sampling (Figure 3) involves di-
viding the dataset into clusters and then randomly selecting entire
clusters to form the sample. For our study, we created clusters
based on the source datasets, therefore grouping by different types
of logical reasoning tasks (programming, math, science, etc.). This
sampling method allows us to capture the variability and specific
characteristics of different reasoning tasks and should improve the
model’s robustness when handling different logical challenges.

In our experiments, we again clustered using the provided labels
in the Open-Platypus dataset, and randomly selected 3 clusters. We
ran 3 different trials with 3 random cluster selections.

Figure 3: Cluster sampling from a dataset with 3 labels. This
example selects 2 of the 3 clusters for the sample.

2.2 Data Ablation-Guided Sampling
The central focus of this research is the development and application
of data ablation-guided sampling (Figure 4). This approach indi-
vidually evaluates the contribution of each subset by sequentially
omitting one subset at a time during fine-tuning and subsequent
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benchmarking, allowing us to determine the specific impact each
subset has on the overall model performance.

Our original dataset, Open-Platypus, is made up of 11 distinct
logical reasoning subsets (organized into 10 sample-able datasets
in the implementation). For data ablation-guided sampling, we
sequentially remove each of the ten subsets from the dataset, one
at a time. This results in the creation of ten separate training sets,
each of which contains nine of the ten original subsets. With each
of these leave-one-out datasets, we fine-tune our base LLM and
evaluate its performance on the same logical reasoning benchmark
used for the baseline.

We compiled and analyzed the performance results from these
ten ablation scenarios to assess how the exclusion of each subset
affects the model’s logical reasoning capabilities. This analysis
allows us to pinpoint which subsets contribute most strongly to
logical reasoning abilities, as a significant drop in performance
when a particular subset is omitted indicates the importance of its
contribution. Conversely, subsets whose omission does not notably
impact performance can be considered less critical. These subsets
could theoretically be left out of fine-tuning in practice to reduce
fine-tuning time without impacting performance.

Data ablation-guided sampling offers several key benefits. First,
it enables the identification of critical subsets, highlighting the
data subsets that are most instrumental in enhancing model per-
formance. Second, it optimizes the use of computational resources
by allowing researchers to focus on the most impactful data, there-
fore reducing the time and cost associated with fine-tuning. This is
particularly advantageous for institutions with limited resources,
as it democratizes access to powerful models. Lastly, it facilitates
informed data reduction by guiding the inclusion of important sub-
sets, ensuring that even with reduced data, the model maintains
strong performance. This is significant for use in domains where
data is not available in mass, or too large to be practical for training.

3 TRAINING METHODS
In this section, we will describe the open-source data set we used for
fine-tuning LLMs for each of our experiments, Open-Platypus. Then,
we will describe the technical details of our fine-tuning process.

3.1 Training Dataset
The training dataset used in our work was created for the Platypus
paper [3], where the authors compiled data from 11 different sources
to build a diverse and comprehensive dataset that could be used
to fine-tune models with logical reasoning ability. Each source
contained a different number of data points, shown in Table 1,
totaling 24,926 data points.

The main benefit of the Open-Platypus dataset is its focus on
high-quality data that was specifically picked to improve the per-
formance of LLMs on logical reasoning tasks. The creators of the
dataset selected questions that would enhance an LLM’s reasoning
abilities, with a strong focus on STEM and logical question answer-
ing. Even though the dataset is relatively small, with about 25,000
questions total, it has proven to be very effective for fine-tuning
LLMs, with the authors using it to fine-tune a model that ultimately
achieved first place on HuggingFace’s Open LLM leaderboard. In or-
der to ensure cleanliness of the data, the authors of Open-Platypus

Source Data Points
MATH/PRM-800K 12,298
ScienceQA 1,317
SciBench 616
ReClor 4,530
TheoremQA 564
Leetcode-Solutions-Python 1,100
Airoboros 2,605
Tigerbot-Kaggle 386
ARB 713
Guanaco 797

Table 1: Data sources and their corresponding numbers of
data points.

additionally performed contamination checks to ensure the data
points included were not already present in common model pre-
training datasets. For these reasons, we chose to use Platypus as
the base dataset for our work.

Open-Platypus consists of 11 source datasets with differing fo-
cuses:

• PRM800K: A process supervision dataset containing 800,000
step-level correctness labels for model-generated solutions
to problems from the MATH dataset

• MATH: A dataset of 12,500 challenging competition math-
ematics problems

• ScienceQA: A dataset of approximately 21k multimodal
multiple choice questions with diverse science topics and
annotations of their answers with corresponding lectures
and explanations

• SciBench: A dataset of college-level scientific problems
sourced from instructional textbooks

• ReClor: A dataset of logical reasoning questions of stan-
dardized graduate admission examinations

• TheoremQA: A question-answering dataset driven by STEM
theorems containing 800 annotated QA pairs covering 350+
theorems spanning across math, EECS, physics and finance

• Leetcode-Solutions-Python: A dataset of solutions to
Leetcode problems written in Python

• Airoboros: A dataset of synthetic instruction/response
pairs for various logical reasoning tasks

• Tigerbot-Kaggle-Leetcode: A dataset of Leetcode ques-
tions with solutions and explanations

• ARB: A dataset of advanced reasoning problems that test
deeper knowledge of mathematics, physics, biology, chem-
istry, and law

• Guanaco: A subset of OpenAssistant ConversationsDataset
[1] containing human-generated, human-annotated assistant-
style conversations

3.2 Model Fine-tuning
For our experiments, we focused on fine-tuning Llama 3.1 8B using
the Low-Rank Adaptation (LoRA) technique. LoRA is a method
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Figure 4: Data ablation on a dataset with 3 subsets. In this example, each sample removes one subset.

developed to optimize the fine-tuning process, reducing both com-
putational resources and time, which is particularly beneficial for
working with large models like Llama 3.1 8B.

LoRA works by adding low-rank decomposition matrices to each
layer of the transformer model, allowing the main model weights to
remain frozen during training. This means that instead of updating
all the parameters in the model, we only adjust a smaller set of
parameters introduced by LoRA. This reduction in the number of
parameters to train drastically cuts down on the necessary com-
putational power and time, enabling us to fine-tune Llama 3.1 8B
more efficiently.

The choice of Llama 3.1 8B as the base model for our experi-
ments was motivated by the authors of Platypus using Llama 2
70B as the base model for their experiments. Due to the number of
fine-tuning runs that we needed to complete for this project, we
opted for a smaller model size that would allow us to run experi-
ments more quickly with our available compute. We also chose the
more updated 3.1 version of Llama as we were interested in testing
how the modern model could compete against its larger and older
counterpart.

We completed the following fine-tuning process for every exper-
iment run:

(1) Dataset Preparation: The first step in each experiment
was selecting a dataset for fine-tuning. This was done, ei-
ther using a sampling method as described in the previous
section, or using the full Open-Platypus dataset as an upper
baseline.

(2) Model Setup: We integrated the Llama 3.1 8B model with
the LoRA modules. This setup involved initializing the

model and adding the LoRA-specific low-rank decomposi-
tion matrices to each transformer layer.

(3) Hyperparameter Tuning: Fine-tuning involved setting
hyperparameters such as learning rate, batch size, and the
number of epochs. We opted for a smaller batch size of 2 in
order to prioritize performance of the model over training
time. In addition, we chose a learning rate of 2.5e-5 with
evaluation performed every 50 steps. In order to more ef-
ficiently train our model we used the paged 8 bit version
of the adamw optimizer, allowing us to perform evalua-
tion steps much more efficiently than the standard 32 bit
version.

(4) Training Process: The fine-tuning process was conducted
over each dataset, with a limit of 500 training steps to pre-
vent overly long training times.

(5) Evaluation: After fine-tuning, we evaluated our model
using three logical reasoning benchmarks used in the Platy-
pus paper, as described in the next section. This step was
crucial to determine whether the fine-tuning process had
successfully enhanced the model’s ability to handle logical
reasoning tasks.

Our fine-tuning tasks were run with an A100 GPU, Intel Xeon w/
2 vCPUs @ 2.20 GHz CPU, 80 GB system RAM, 40 GB GPU RAM,
and 256 GB of disk. We used Wandb to track system metrics for
each of our trials.

4 EVALUATION
In this section, we evaluate and compare the performance and
efficiency of the fine-tuned LLMs in our experiments. We aim to
answer the following questions:
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• Which data subsets are most instrumental in improving
model performance on logical reasoning benchmarks?

• How do the different sampling methods impact the effi-
ciency and performance of this fine-tuning?

• Which sampling method resulted in the best performance
to training time ratio?

• Howdoes energy consumption change per samplingmethod?
• How does disk usage change per sampling method?

We used 3 benchmarking datasets to measure the performance
of our models. These datasets are specifically designed to evaluate
performance on logical reasoning tasks, andwere used in the similar
experiments of the Platypus paper [3].

• HellaSwag: A challenge dataset for evaluating common-
sense natural language inference

• MMLU (Massive Multitask Language Understanding):
A multidisciplinary multiple-choice collection

• TruthfulQA: A dataset of 817 questions that span 38 cate-
gories designed to test if models answer questions truthfully

Similar to the fine-tuning step, our benchmarking tasks were
run with an A100 GPU, Intel Xeon w/ 2 vCPUs @ 2.20 GHz CPU,
80 GB system RAM, 40 GB GPU RAM, and 256 GB of disk. We used
Wandb to track system metrics for each of our trials.

4.1 Benchmark Performance
We visualize the benchmark performances of the models generated
from the various trials discussed in Section 3.

Figure 5: Comparison of benchmarking performance per
sampling method type. Overall, fine-tuning with subsets
from each of the sampling methods saw comparable per-
formance on benchmarks to fine-tuning on the full training
dataset. All fine-tuned models performed better than the
base Llama model.

In Figure 5, we present a few notable results. First, it is clear that
fine-tuning on the full Open-Platypus dataset provides the highest
performance, save for the MMLU metric. The only other point that
beats this score is the average of the ablation sampled trials. Beyond
this, we can see that both random and stratified sampling perform
far better than the base model, despite only being fine-tuned on
25% of the data points. This indicates that even a small number of

Figure 6: Data ablation trial subset performance on the
MMLU benchmark. Removing the Leetcode and MATH data
subsets resulted in the largest performance loss.

Figure 7: Data ablation trial subset performance on the Hel-
laSwag benchmark. All models performed similarly, and bet-
ter than the base Llama model.

data points within the Open-Platypus dataset carry a large amount
of information that is useful for the given benchmarks.

In Figures 6, 7, and 8, we show the performances of each ablated
dataset across the different benchmarks. It is notable that we do
not see that same trends in each chart, indicating that none of the
data sources seem to impact model performance the same for each
benchmark. For example, while removing ARB leads to the greatest
improvement on HellaSwag, it only results in above average to
average performance on MMLU and TruthfulQA. We believe this
indicates that each data subset carries information that is useful in
some but not all of the benchmarks, which follows from the diverse
natures of each of their questions.

Table 2 shows the performance increase of each sample subset
over the base Llama model on each benchmark, next to the number
of data points included in that subset. Figure 9 plots the performance
difference per 100 data points. Each of the data ablation subsets
saw slight performance gains over the base model for almost all
variations and all benchmarks. However, the statistical sampling
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Figure 8: Data ablation trial subset performance on the Truth-
fulQA benchmark. Removing the MATH data subset resulted
in the largest performance loss.

methods had very high performance gains relative to their small
training data subset size. This implies that the statistical sampling
methods are a strong choice for efficient fine-tuning, as fewer data
points will reduce training time while still providing performance
gains.

Using the results from Table 2, we can make conclusions about
which data sources are more and less important for overall perfor-
mance on the given benchmarks. First, we can see that the data
ablated subset with the highest performance corresponds to Sci-
enceQA, with an average improvement of 10.33% over the base
model. This means that fine-tuning a model with all of Open-
Platypus minus ScienceQA leads to a higher average performance
than any other ablation, so ScienceQA is the least important dataset
for logical reasoning, as measured by our given benchmarks. On the
opposite end of the spectrum is Leetcode-Solutions-Python with
an average improvement of 2.64%. This means that the Leetcode-
Solutions-Python dataset likely carries information that is very
important for performance on the given benchmarks, since remov-
ing it leads to the worst-performing fine-tuned model out of all the
ablated models.

The strong performance of the fine-tuned models suggest that
careful curation of the training dataset can have comparable per-
formance to training on an entire dataset. This suggests generally
that LLM training can focus on data quality over quantity, which is
especially important for domains where less training data is avail-
able, or where training on large amounts of data is computationally
infeasible.

4.2 Training Runtime
We investigate the runtime of fine-tuning on the datasets generated
by our various sampling methods. Figure 10 compares the training
time of a model for each of the 5 general types of sampling we used.

Fine-tuning using the full content of Open-Platypus took the
longest, as it contained the most data points.

Both stratified and simple random sampling took less than 1/3 of
the training time of the full dataset. This is likely due to including
far fewer (only 25%) of the data points in these subsets.

Figure 9: Accuracy improvement of models on benchmark-
ing datasets over the base Llama model, per 100 data points.
The MATH subset improved significantly for every 100 data
points included on the HellaSwag benchmark. The Leetcode
subset saw decreased performance over the base model on
the MMLU benchmark. The statistical sampling methods
saw very high performance gains relative to their small data
point subsets on two of the benchmarks.

Comparing training time to performance, we note that these
two random sampling methods performed very well relative to
the time required to fine-tune, demonstrating similar benchmark
performance to some ablation-guided samples and almost meeting
the performance of the full fine-tuned dataset. Comparable perfor-
mance with reduced training time is significant for the efforts being
made to democratize access to high-functioning models.

4.3 Energy Consumption
We explore the energy consumption of fine-tuning for different
subsets of training data.

Figure 11 shows the average GPU power usage for the different
sampling trials. All trials had about the same power usage.

More interestingly, Figure 12 displays the energy cost in Watt-
hours per sampling method. This comparison shows that the cost
training with the statistical sampling methods is much smaller than
the cost of the other sampling methods, and all sampling methods
are less expensive than fine-tuning on the full dataset. If we compare
these results with the performance gains we observed in Figures
5 and 9, we conclude that the performance to energy cost benefit
is large for the statistical sampling methods. Again, this suggests
that statistical sampling is a pathway to efficient, affordable, and
sustainable fine-tuning of high-performing models.

4.4 Disk Utilization
We investigate the disk utilization for fine-tuning on different sub-
sets of training data.
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Source MMLU HellaSwag TruthfulQA Benchmark Average Δ Data Points
Full Dataset 3.39 6.25 13.03 7.56 24926
MATH/PRM-800K* 3.41 8.17 -0.23 7.76 12,628
ScienceQA* 13.76 9.10 8.15 10.33 23,609
SciBench* 12.42 6.61 6.11 8.38 24,310
ReClor* 12.42 3.82 4.41 6.88 20,396
TheoremQA* 12.74 2.58 5.73 7.02 24,362
Leetcode-Solutions-Python* -4.48 3.20 9.21 2.64 23,826
Airoboros* 11.67 3.51 9.91 8.36 22,321
Tigerbot-Kaggle* 13.33 2.74 10.07 8.71 24,540
ARB* 10.09 8.99 7.29 8.79 24,213
Guanaco* 10.70 7.07 3.65 7.14 24,129
Random Sampling -0.81 5.00 8.50 4.23 5,976
Stratified Sampling -0.14 8.58 10.73 6.39 5,823
Cluster Sampling (average) 1.77 3.75 12.06 5.86 11,205

Table 2: Performance difference of each ablated dataset compared to base Llama, with number of data points included. Each
row with an asterisk represents a training data subset with the specified source data removed.

Figure 10: Fine-tuning time per sampling method. Fine-
tuning took the longest when using the full-dataset, and the
shortest when using the 25% random sample of the dataset.

The results shown in Figure 13 show a correlation between the
number of training data points and the disk utilization for fine-
tuning over each sampling method. It is interesting to note that
the full dataset and statistically sampled datasets follow a similar
trend to runtime graph, but that the ablation sampling stands as an
outlier that breaks the trend. It is initially unclear why this is, but
it may be worth exploring in future experiments.

5 RELATEDWORK
Fine-tuning techniques for large language models (LLMs) have been
the focus of extensive research due to the high computational cost of
training and adapting these models. Low-Rank Adaptation (LoRA)

Figure 11: Average GPU power usage per sampling method.
Fine-tuning for each sampling method used about the same
wattage.

[2] is a notable approach that reduces the number of trainable pa-
rameters by introducing low-rank updates to pre-trained models.
This technique has demonstrated significant efficiency improve-
ments, making it a promising solution for resource-constrained
environments. We use LoRA in our experiments for fine-tuning.

Efforts to optimize the scalability of LLM training have also been
advanced by frameworks like Megatron-LM [4], which employs
model parallelism to enable the training of multi-billion parameter
models on GPU clusters. By optimizing both training algorithms
and infrastructure, Megatron-LM has set a benchmark for the de-
velopment of scalable, high-performance LLMs. Combining infras-
tructure advancements with our research on data sampling could
enhance fine-tuning efficiency without risking trade-offs between
the two dimensions.
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Figure 12: Energy cost of fine-tuning per sampling method
inWatt-hours. The full dataset used the most energy relative
to the time taken to train, while simple random and stratifed
had very low energy usage.

Figure 13: Disk utilization per sampling method. The data
ablation experiments had the highest disk utilization, while
simple random and stratified sampling had the lowest.

Work on intelligently selecting important training data has also
seen an increase in recent years, advanced by work like ELFS [6],
where a given dataset is analyzed to find the most representative
subset for deep learning training. Using the approach described
by the authors, pseudolabels are generated for the data points in a
given dataset, which can then be used to prune the data to more
efficiently carry the most significant performance gains with the
lowest training costs.

Our research closely follows the recent paper on Platypus [3].
This work explores open fine-tuning benchmarks for LLMs, particu-
larly for logical reasoning tasks, and provides the dataset they used

in fine-tuning experiments as an open-source repository, Open-
Platypus. This study provides insights into task-specific fine-tuning
and highlights the trade-offs between dataset size, computational
cost, and model performance. This aligns closely with our project’s
focus on identifying optimal data subsets for logical reasoning
benchmarks. We expand on this research by fine-tuning different
base LLMs and strategically sampling pieces of this dataset to de-
termine which subsets are most impactful on LLM performance.

Together, these advances provide the foundation for addressing
the challenges of fine-tuning LLMs efficiently. Our work builds
on these methodologies by investigating intelligent data sampling
techniques to further reduce computational costs while maintaining
or enhancing logical reasoning performance.

6 DISCUSSION AND CONCLUSION
In this paper, we have shown how various sampling methods for
sampling a training dataset for fine-tuning LLMs affects the perfor-
mance and efficiency of the model on logical reasoning tasks. We
discussed the tradeoffs between different sampling methods based
on the comparison of their performance and resource usage.

Our evaluation shows that strategic data sampling methods can
significantly enhance the efficiency of fine-tuning large language
models while maintaining competitive performance on logical rea-
soning benchmarks. Fine-tuning with statistical sampling methods,
such as stratified and random sampling, achieved comparable bench-
mark scores to full-dataset fine-tuning while using only 25% of the
training data. These methods also required substantially less train-
ing time, energy, and disk utilization, underscoring their potential
for cost-efficient model adaptation. Notably, our data ablation trials
revealed that certain subsets, such as MATH and Leetcode, were
especially influential in driving performance improvements, though
their impact varied across benchmarks. Reduced training resource
requirements and high performance-to-cost ratios highlight sta-
tistical sampling as a viable pathway for democratizing access to
high-performing LLMs, providing both energy-efficient and compu-
tationally accessible solutions for model fine-tuning, and offer an
opportunity to continue exploring improving data ablation-guided
sampling to achieve similar advantages.

Future work could explore and compare additional sampling
methods, including other statistical sampling methods, more varia-
tions on data-ablation guided sampling, and/or other hybrid sam-
pling approaches. Additionally, this work could be explored in a
different context of LLM tasks, beyond logical reasoning, using
different catered training datasets. Another variation could include
fine-tuning a larger base model, such as Llama 70B (similar to the
Platypus work).

As LLMs continue to grow in size and scope, these insights could
shape future efforts to optimize dataset creation and refinement,
particularly for specialized tasks like logical reasoning.
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