
Piazza Search Project Report

Julia Aoun jcaoun@umich.edu
Chimmuanya Iheanyi-Igwe ciheanyi@umich.edu

Mariam Mahmoud mariamhm@umich.edu
Melina O’Dell melodell@umich.edu
Sydney Swider swiders@umich.edu

1 Project Description

1.1 Current Problem

The motivation for building an improved Piazza
search engine is the frustration we have personally
experienced, both as students and TAs, when try-
ing to search for posts related to our questions or
our students’ questions on Piazza. Piazza is a tool
that all UMich CS students interact with on a daily
basis for asking questions, studying, and interact-
ing with other students. But, the existing search
functionality is poorly designed and continues to
hinder students and instructors ability to quickly
find posts and questions.

Currently, Piazza returns query results ordered
by the recency of the post, and only if the post in-
cludes the exact matches with individual words in
the query, ignoring the meaning of specific com-
binations of words. It also does not account for
misspelled words, which can lead to an especially
frustrating experience when trying to search for
related topics as only exact matches with those mis-
spellings will be retrieved. Trying to search for an
existing post that the user has seen before is unnec-
essarily difficult. For example, if an IA wants to
refer a student back to a previous post from another
student, the search functionality is so ineffective
that it does not help with finding it. This results
in the TA having to search through posts manu-
ally. The consistent low quality of Piazza’s search
results is disappointing for all users.

Over multiple semesters (and even within the
same semester), students often ask similar ques-
tions about specific projects, exams, or commonly
difficult homeworks. Piazza does not currently of-
fer a way to compile a list of "Frequently Asked
Questions" based on this redundancy. We believe
that would be extremely beneficial for students,
as they can easily find and reference the answers
to common questions without waiting for the in-
structors to rewrite the answer. It also benefits

instructors because the FAQ could be automatically
generated, instead of instructors having to manu-
ally update it during the semester. This helps to
reduce the overall workload, while also limiting
the number of duplicate questions instructors may
see around certain topics.

We would like to save students and instructors
time, effort, and frustration when searching Piazza
by building a smarter search functionality to miti-
gate these problems.

1.2 Proposed Solution and Approach

This project is focused on creating a better search
feature for Piazza. With improved algorithms and
a user interface, both students and instructors will
be able to pass in a query and retrieve any and all
posts relevant to their search. In addition to this, we
use K-means clustering to generate a “FAQ” page
for each topic based on the most popular questions
asked about that topic during previous semesters.
We hope the availability of this topic summary re-
duces duplicate question load when projects and
assignments are released throughout the semester.

We scraped Piazza question and answer data for
one course and implemented three models with in-
creasing levels of specificity before evaluating their
precision and recall: The boolean model, the vec-
tor space model with weighting scheme tfc nfx,
and the vector space model with weighting scheme
nxx bpx. We also decided to make two versions of
the inverted index used for these calculations: One
with bigrams and one with unigrams. We analyzed
the differences between the precision and recall
for each model for each type of inverted index to
see which provided better results. Evaluation of
the ground truth for the dataset was done manually
by identifying relevant documents for each of the
training queries.

For demonstration purposes, we built a simple
UI (Similar to the current Piazza interface) to inter-
act with the search feature. We used scraped Piazza

1

course datasets to create databases, which allows
users to select from different courses to search for
the query. We also built an API to call the search
functions and populate the ranked results based on
the user-inputted query. Unlike Piazza, our UI sorts
relevant documents based on similarity, rather than
recency of the post. This UI also displays the FAQ
topics generated for the selected course.

2 Related Work

There has been lots of work using NLP techniques
to classify and compute the similarity between
forum posts, including coding-specific platforms.
This work is relevant to our project, as the EECS
Piazza data we are working with is dominated by
code-related questions and answers.

2.1 Document Summaries

Work by Abric et al. (2019) analyzed questions on
Stack Overflow, a well-known social platform for
asking and answering questions related to software
development. They used TF-IDF, cosine similar-
ity, and other NLP techniques to analyze similar
posts, determine if they were duplicates, and assess
the quality of these duplicates against each other.
This is similar to the work we are trying to do with
the FAQ section. We will use similar weighting
schemes and text analysis methods to compare Pi-
azza questions and answers, conglomerating the
most similar and relevant for each project into a
summarized collection.

Generating relevant and comprehensible sum-
maries from extracted text data is known to be a
challenging problem. There have been many pro-
posed summarization algorithms to optimize auto-
matic labeling of topics, such as the one designed
in work by Wan and Wang (2016). The FAQ gen-
eration implementation uses similar but simpler
document summarization techniques, grouping to-
gether similar data entries and extracting the most
relevant and encompassing words as “summaries.”
We use the K-means clustering algorithm to group
related Piazza posts together (as well as incorpo-
rating manual classifications provided by Piazza’s
existing folder feature). Rashid et al. (2020) in-
vestigates a similar use for K-means and reported
success with categorizing and topic assignment to
data. By combining these techniques, we hope
to achieve sufficient topic clustering and summa-
rization to demonstrate the potential for improving
class forum data.

2.2 Similarity Measures
Similar classification techniques were also used
for creating AnswerBot, a tool for summarizing
the answers to similar or duplicate Stack Overflow
questions given a query (Cai et al. (2019)). More
examples of this can be observed in work by Dis-
tante et al. (2015) relating and suggesting similar
topics based on forum content. We will be using
similar approaches as these groups did to process
and analyze the data we scrape from Piazza. Vec-
tor space models and TF-IDF are known to work
well on social media data, as shown in work by
Venekoski et al. (2016) classifying social media
texts. They tried out multiple weighting schemes,
a comparison that we also intend to make, to com-
pare the effectiveness of each scheme against each
other for this specific type of data.

3 Data Collection and Annotation
Methods

To scrape post data from Piazza courses, we wrote
a Python script that makes calls to the Piazza API
and collects the following information from every
Piazza post in the specified dataset:

• Post ID

• Folders the post was tagged with

• Post title

• Post question

• Student answer (if one was given)

• Instructor answer (if one was given)

• All follow ups

The script takes in a range of post IDs, gathers
all the data, and writes to a JSON file (named
<class_name>_posts.json). Figure 1 shows an
example JSON file with this semester’s EECS 486
Piazza data.

This raw data serves as input to a computation
pipeline that preprocesses the text and builds an in-
verted index. We use case-transformation and tok-
enization to preprocess the post data before generat-
ing the inverted index. The inverted index contains
term frequency and inverse document frequency
values for all terms in all documents to be used for
computing similarity scores.

After scraping all the posts, we manually cre-
ated 50 test queries on various topics in the class

2

Figure 1: Sample JSON data from the W23 486 Piazza

with varying degrees of specificity. Once we gath-
ered the test queries, we had two members of the
group manually search through all of the posts to
determine which were relevant to each query. We
stored this information in a spreadsheet to calcu-
late and plot the precision and recall of the system.
We focused on posts that shared key words with
the query and used our domain knowledge to de-
termine if posts with the same key words as the
query were actually relevant or if they would poten-
tially answer the question. Each query, on average,
had between 15-25 relevant posts related to it, with
more relevant posts for the general queries and
fewer posts for specific queries. These classifica-
tions serve as the ground truth for the IR system.

4 Method Description

4.1 Building the Corpus

To add documents to the corpus, we scraped
public Piazza posts from the EECS 370 Winter
2022 semester, which included approximately 5000
posts. We used sample questions from the EECS
370 Spring 2022 semester as test queries because
the dataset was smaller, including only 500 ques-
tions. Each post on Piazza is tagged with a certain
topic (also called a “folder”). We took a portion
of the questions from each topic to include vari-
ety in the 50 queries. Once we chose the best 50
queries. After gathering the queries, we manually
went through the documents with the same topic
of the query and decided whether or not that doc-
ument was relevant to the query or not. These
human judgements are used as the ground truth for
the dataset when we calculate precision and recall.

4.2 Preprocessing and Spellcheck
Implementation

The initial preprocessing follows a similar method-
ology from Assignment 1. We scrape text data from
Piazza, taking the questions, student and/or instruc-
tor answers, and follow ups. We then tokenize
the text, using the Python contractions library to
break up any contractions. We remove stopwords
from the tokenized text, using the base stopword
list from the course as well as specific words we
manually decided did not provide any helpful con-
text to the posts when inspecting intermediate test
results.

In addition to this preprocessing, we created and
applied a spellcheck to the documents and queries.
The spellcheck process consists of building a dic-
tionary using a starter set of words from the nltk
words set, and a set of every word that appears
more than 5 times in the corpus. Choosing 5 as the
cutoff was partially arbitrary. We looked through
the frequency of different words in the data and
observed that using values below 5 would include
too many misspelled words, which we did not want
to add to the dictionary of “correct” words. This al-
lowed us to identify misspelled words as those that
were not present in the dictionary. The spellcheck
program then finds the word in the dictionary that
has the highest similarity using difflab’s Sequence-
Matcher.

Initial preprocessing along with spellcheck made
the search feature more resistant to typos and al-
lowed for more meaningful links between similar
words.

4.3 Building the Inverted Index Using a
MapReduce Pipeline

To build the inverted index for perform weight-
ing scheme calculations, we designed a pipeline
(sequence) of MapReduce programs. These pro-
grams calculate the term frequency and inverse
document frequency for each term given an input
corpus of documents (In our case, the JSON list
of Piazza post data) and output an inverted index,
also represented as JSON. JSON data is very easy
to work with for calculations, making it the best
choice for our data representations. MapReduce
programming is best suited for processing and per-
forming calculations on large amounts of data (In
fact, Google invented and uses MapReduce to do
batch data processing for their search engine, as
noted in the original MapReduce paper, Dean and

3

https://github.com/kootenpv/contractions
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html

Ghemawat (2004)). Although we do not have ac-
cess to a real distributed system for this project,
which would have allowed us to take advantage
of the power of parallel programming, we will im-
plement the inverted index creation this way as a
proof-of-concept. Given the resources, these in-
verted index programs could be scaled to massive
amounts of input data and perform these computa-
tions in a reasonable amount of time.

4.4 Models and Evaluation Methodology
Our evaluation methodology consists of precision
and recall metrics, based on the relevant judge-
ments for each document we collected for each of
the queries. We had two teammates evaluate which
documents from the Winter 2022 dataset are rele-
vant to each query. These judgments may include
some bias, given that we had only two (human)
teammates judging the dataset for the test queries,
but we attempted to minimize this discrepancy by
comparing judgements between the two teammates
(as opposed to only following the judgment of one).
Both teammates double-checked a random subset
of the other’s relevant documents to validate each
other’s judgments.

We used three different models to evaluate rele-
vant documents for the test queries. We compared
their precision and recall values in order to choose
the “best” model to use with the user-facing search
feature demonstration. Each model was evaluated
using both unigram and bigram inverted indices.

Boolean: With the boolean search model, we
will return all documents that have a word in com-
mon with the query.
tfc nfx (TF-IDF): Our second iteration will

implement standard TF-IDF, using tfc and nfx
weighting for documents and queries respectively
(See Figure 2).

Figure 2: The Salton-Buckley tfc nfx weighting
scheme

nxx bpx: Our last iteration will implement the
weighting nxx bpx weighting for documents and
queries respectively (See Figure 3).

4.5 Using K-Means Clustering for FAQs
Aside from implementing a better Piazza search
functionality, we believed that creating an addi-

Figure 3: The Salton-Buckley nxx bpx weighting
scheme

tional FAQ generation tool would be beneficial for
both students and instructors. This tool computes
similarities between documents, clusters relevant
documents together, and extracts keywords from
each cluster to summarize each subset of docu-
ments. This can be used to create an FAQ post for
each project or assignment that will allow users
to conveniently find posts that are informative of
broad topics.

Before generating the actual clusters, we find an
optimal number of clusters between 2 and 20, incre-
mented by 2 (2, 4, 6, 8. . .). We do this by running
the K-means algorithm to generate each different
number of clusters and graph the sum of squared er-
ror for each (See Figure 6 in the "Results" section).
Finding the elbow point on the graph gives an esti-
mate for the optimal number of clusters, which we
use when generating the FAQ.

Once the clusters are generated, we extract
keywords from each cluster using sklearn’s
get_feature_names_out function. This allows
us to find potential keywords by grouping all di-
mensions of our TF-IDF matrix by cluster. Our
dataframe then consisted of a row for each cluster
and a column for each Piazza post in the dataset.
We choose the best words from the potential key-
words by finding the words that appear in the posts
with the highest TF-IDF score in the cluster.

We further split clusters into folders, taking ad-
vantage of Piazza’s existing manual classification
system, known to users as "folders" (ex. cluster
0 homework 1, cluster 0 homework 2. . .). We fi-
nally generate a text file with all of the clusters and
keywords per cluster.

5 Results

5.1 Spellcheck

When building the dictionary for spellchecking, we
set the cutoff for the number of times that a word
had to be seen within the corpus in order for it to
be considered correct to 5. We added all words that
appeared more frequently to the dictionary, assum-
ing that they were "correct" because of repeated
appearance. 4.6% of all words were seen with a
frequency of less than 5, and therefore classified as

4

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest.get_feature_names_out
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest.get_feature_names_out

misspelled words. The spellcheck function takes
in a word or multiple words, classifies each word
as correct or incorrect, identifies the correct word
for a misspelled word, and returns the correctly
spelled word(s). This function was a key part of
the preprocessing we performed on the dataset.

Figure 4: A pie chart showing the fraction of words that
were classified as "misspelled" (in yellow)

Figure 5: Plot of frequency of words. The vertical red
line shows cutoff for fraction of “correct” words used
in dictionary

5.2 FAQ

Creating the FAQ data generally worked well, with
the clustering algorithm outputting several clear
clusters that had good descriptions.

Figure 6 shows the sum of squared errors, with
the elbow of the graph at number of clusters =
8, leading us to determine that 8 was the optimal
number of clusters for the EECS 370 W22 Piazza
dataset.

This clustering generated 8 groupings of key-
words (Table 1). Figure 7 shows a scatter plot
representation of the clusters, demonstrating the
similarity between any two posts and providing a
visual of the effectiveness of the clustering algo-
rithm on this dataset. More broadly, this algorithm
seems to have high success on online forum data.

Figure 6: The sum of squared errors for each cluster
count, with a significant elbow at 8 clusters

Table 1: K-Means clusters of keywords from EECS 370

Keywords Extracted
from W22 EECS 370
Piazza Data

Category

0 "getting, simulator, run,
project, spec, output, au-
tograder, file, error, code"

AG + Project
errors

1 "sure, look, autograder,
code, ag, passing, failing,
case, cases, test"

Test Cases

2 "miss, access, entry,
tlb, level, memory, size,
cache, table, page"

Cache
Hits/Misses +
Memory

3 "value, data, beq, regis-
ter, add, instruction, lw,
pc, stage, resolved"

LC2K Instruc-
tions

4 "wrong, failing, incorrect,
tests, case, code, output,
autograder, cases, test"

Test Cases

5 "wrong, tests, error, out-
put, code, autograder,
failing, case, cases, test"

Test Cases

6 "confused, nan, address,
number, need, lecture,
problem, use, bit, ques-
tion"

Lecture Ques-
tions + Prob-
lems

7 "address, bits, symbol, re-
location, set, size, mem-
ory, block, table, cache"

Memory + Ad-
dresses

5

Figure 7: Scatter plot representation of the clusters,
demonstrating similarity between any two posts

5.3 Precision and Recall
The maximum number of posts returned for any
one query by any weighting scheme was just under
3000. Therefore, the first set of precision and recall
metrics displayed in this graph are for the top 10 to
3000 on increments of 10 documents returned (10,
20, 30, 40, . . . 3000). We plot the precision and
recall values for each of the 6 weighting schemes:
unigram bxx bxx, bigram bxx bxx, unigram nxx
bpx, bigram nxx bpx, unigram tfc tfx, bigram
tfc tfx in Figures 8 and 9.

Figure 8: Precision for the top 3000 most relevant posts
from W22 EECS 370 Piazza data

The bigram weighting schemes did not perform
as well in recall, but had a higher precision than
the unigram. The bigram generally returned much
fewer documents than the unigram. Within the uni-
gram and bigram classes, though, all of the weight-
ing schemes performed similarly.

More interesting behavior can be observed in the
graphs at the 300 mark and below. We rescale the
graphs in Figures 10 and 11.

The difference in performance between each of

Figure 9: Recall for the top 3000 most relevant posts
from W22 EECS 370 Piazza data

Figure 10: Precision for the top 300 most relevant posts
from W22 EECS 370 Piazza data

Figure 11: Recall for the top 300 most relevant posts
from W22 EECS 370 Piazza data

6

the weighting schemes is more noticeable at this
granularity. The tfc tfx weighting scheme for
the query and the document appears to perform
the best. We overlay these curves in Figure 12 for
convenience.

Figure 12: Precision and recall for the tfc tfx weight-
ing scheme for the top 300 most relevant posts

The precision and recall curves diverge signifi-
cantly after 30 documents returned. Therefore, we
identified 30 as the optimal number of posts to re-
turn per query. It is worth noting that this number
could change with each dataset.

5.4 User Application

We built a simple API and user interface for in-
teracting with the improved search feature. The
technical details for this web app are not relevant
for information retrieval analysis, but we found
it was easiest to test results with a user-friendly
interface (see Figure 13).

Figure 13: Piazza Search 2.0 UI

6 Conclusions

6.1 Main Contributions

This project makes it easier and more effective to
search for relevant Piazza posts across multiple
semesters.

6.2 What Worked Well

Scraping: We were very successful in getting all of
the posts that we needed from Piazza. We were able
to download data for all posts from a specific Piazza
course and use it to generate an inverted index,
correct spelling, and perform K-means clustering
to group similar posts together. We were also able
to remove links to other posts and replace them
with the answer given in the other posts, enhancing
the content base by including posts that do not
directly have content due to linking.

Retrieving Relevant Posts: The chosen mod-
els were good at returning a lot of posts, with the
most number of posts returned for a given query
for any weighting scheme being just under 3000.
This is very different behavior from the real Piazza,
which only returns a post if all of the words in a
query appear in the text. From the perspective of
the user, it is better to have some posts that aren’t
perfectly accurate or precise and have the option to
sort through the returned posts, than having none
at all.

Spellcheck: Spellcheck was fun to implement
and addresses the severe sensitivity to misspellings
the current Piazza search functionality has. It was
quite slow, taking up to 3 seconds to check each
word, but when run on a small scale (such as only
the search query), it worked well and provided a
more pleasant user experience, even with a slight
performance cost.

FAQ: The general idea of implementing the FAQ
generation with K-means worked well. We suc-
cessfully obtained clusters of posts (which we saw
similarity in after manually scanning the results).
We were able to obtain visual verification of suc-
cessful clustering through scatterplots, and we saw
that certain keywords from EECS 370 were prop-
erly extracted. Overall, we are pleased with the
outcome, but recognize some of its flaws in the
following section.

6.3 What Didn’t Work Well

Runtime of Spellcheck: As mentioned previously,
the runtime for the spellchecking was slow and not
feasible to run on the entire corpus when building
the dictionary, without access to more computa-
tional power. For our application, this could have
been due to the data structure used for the dictio-
nary (A built-in Python dictionary), or more likely,
due to the search space being so large. Ways to
improve this are discussed in the “Future Work”

7

section.
Evaluating Document Relevance: Another as-

pect of this project that could be improved was
evaluating the relevant documents for each of the
test queries. Since one of the group members had
more expertise on the EECS 370 content, it is pos-
sible that the results could be slightly biased and
that the definition of a “relevant document” was dif-
ferent between group members. This may or may
not have affected the precision and recall calcula-
tions. Additionally, the manual search for relevant
documents was performed using the current Piazza
search functionality, which we know to be unreli-
able in many cases.

FAQ Clusters: As seen in the results, some
of the general categories across clusters are sim-
ilar. This could be because the clusters were too
granular or that there were too many clusters. If
we were able to find a way to better predict key-
words with more meaning and less generality, we
could potentially have better clusters. Additionally,
once we have the clusters, we would have to recon-
struct the FAQ by looking through the posts that
were classified in each cluster. Therefore, gather-
ing information to find the FAQs for a dataset using
solely clustering is not incredibly informative. The
FAQ needs to be reconstructed using additional
data after receiving the output from the clustering
algorithm as a starting point.

6.4 Future Work

A very interesting area of future work would be
improving the spellcheck runtime by limiting the
search space of potentially correct spellings for
each word. As mentioned above, the program takes
up to 3 seconds to check each word. In the future,
it would be good to speed this up either by using
a faster data structure or by figuring out a way to
limit the search space more, not requiring us to look
through all possible words. This could be achieved
by precomputing similarity scores between differ-
ent words in the dictionary, then only searching
the space with high similarity scores to that initial
dictionary word. Additionally, the dictionary will
be different for each class, so it would need to be
rebuilt for each unique dataset. For example, the
words “lw” and “sw” are commonly used within
EECS 370 posts referring to assembly instructions.
These words don’t show up in any English dic-
tionary, but we would not want to flag them as
misspelled in this context. These exceptions must

be accounted for.

We could also further refine the weighting
schemes to measure the similarity between a query
and a document. The inspiration to experiment
with a bigram inverted index was the phrase “vir-
tual memory” in the EECS 370 data. This query
initially had a lot of false positives and very low
precision and accuracy scores with the unigram in-
verted index, because both the words virtual and
memory were seen often throughout posts inde-
pendently, but the two together have a different,
more specific meaning. For this query, a bigram in-
verted index worked better because it only returned
posts that had “virtual” and “memory” together. In
most other cases, however, bigrams were far too
restrictive, returning only a fraction of the posts
that unigrams were, resulting in poor recall and
precision scores. Improvement would involve iden-
tifying certain words that should be bigrams, like
“virtual memory,” “crash consistency,” or “control
hazards,” using these as full terms when computing
relevance scores.

If launched as its own application, the UI could
be built to replicate the current Piazza. For faster
runtime, we could have a precomputed matrix of
relevance scores for common words to each of the
posts so that we don’t need to search the inverted
index to compute relevancy scores for every query
request.

For the FAQ portion of the project, we could try
different clustering algorithms to see if they per-
form better and produce better clusters. One new
implementation that we briefly looked into was the
DBSCAN clustering algorithm. This algorithm
doesn’t require an input of the number of clusters
to split the data into like K-means does, but rather
clusters based on distance. Starting from any un-
clustered point, the algorithm finds all points that
are within a certain inputted distance ε of the cur-
rent point, and classifies all these points together as
one cluster. The algorithm then runs in a breadth-
first search fashion, visiting each of the newly la-
beled points within the cluster, finding all points
from the new point within distance ε, and adding
those as well to the cluster. Once the search has
visited all points within a cluster and there are no
more other points within a distance ε, the algo-
rithm marks this cluster as complete and jumps to
the next unvisited point as the starting point for
the next cluster. This method continues until all
points have been sorted into a cluster. This im-

8

plementation would save us the added complexity
and runtime of trying K-means on different num-
bers of initial clusters, as well as the uncertainty
associated with deciding on the optimal number for
the given dataset. Instead, we would have the tun-
able parameter of the distance ε in the DBSCAN
algorithm.

7 Individual Contributions

7.1 Mariam

Mariam worked on gathering the dataset from
Piazza and helped with k-means clustering for
FAQ generation. She solely worked on gathering
data by calling the Piazza unofficial API, format-
ting all results into a JSON file to be easily used
by the inverted index pipeline, and ensuring all
edge cases were satisfied (posts with/without stu-
dent/instructor answers, posts with/without follow
ups, etc.). She also worked on the K-means clus-
tering for FAQ generation (see relevant files). She
wrote the K-means algorithm, helper functions to
display clusters, and graphing to find optimal num-
ber of clusters based on sum of squared error and
the elbow method.

7.2 Julia

Julia worked on evaluating the precision and re-
call of our system, preprocessing, and helped with
the API. She came up with 50 test queries based
on EECS 370 content, helped manually evaluate
the relevance of all posts within EECS 370’s W22
Piazza which allowed us to develop a relevance
judgment file, and eventually helped to calculate
the precision and recall of our system with respect
to this particular dataset.

7.3 Chimmuanya

Chimmuanya worked on spell check and imple-
menting the different weighting schemes to return
the relevant documents given a query. She updated
and resegmented code from our second assignment
to work for multiple query and document weight-
ing schemes. She also changed the code to build
the inverted index using the results of the MapRe-
duce pipeline. Chimmuanya also helped Sydney
with testing and evaluating the results of spellcheck,
and integrated it with the rest of the preprocessing
steps.

7.4 Melina

Melina developed the inverted index pipeline and
worked on the UI. She was familiar with the scala-
bility of parallel programs in the context of search
engines from previous course work and felt like
taking the initiative to write a MapReduce pipeline
to generate the inverted index as proof of concept,
even though it technically did not run any faster
locally. Melina was also familiar with frontend de-
velopment and worked on creating a user interface
similar to Piazza, but featuring the improved search
feature, for the purposes of demonstration.

7.5 Sydney

Sydney worked on spell check, brainstorming the
implementation of K-means, and evaluating preci-
sion and recall of the system. Regarding K-means,
Sydney had worked on a project before that utilized
the clustering algorithm, and had taken a class that
further went into the specifics and applications of
the algorithm. This background helped brainstorm
the implementation and use case of the algorithm
in this project. Additionally, Sydney helped Julia
manually evaluate the relevance of all posts within
EECS 370’s W22 piazza which allowed us to de-
velop a relevance judgment file, and eventually
helped to calculate the precision and recall of our
system with respect to this particular dataset.

All members participated in writing the project
report and designing the project poster during col-
laborative work sessions.

References

Durham Abric, Oliver E Clark, Matthew Caminiti, Ke-
heliya Gallaba, and Shane McIntosh. 2019. Can
duplicate questions on stack overflow benefit the soft-
ware development community? In 2019 IEEE/ACM
16th International Conference on Mining Software
Repositories (MSR), pages 230–234. IEEE.

Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin
Xia, David Lo, and Zhenchang Xing. 2019. Answer-
bot: an answer summary generation tool based on
stack overflow. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, pages 1134–1138.

Jeffrey Dean and Sanjay Ghemawat. 2004. Mapre-
duce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating Sys-
tem Design and Implementation, pages 137–150, San
Francisco, CA.

9

https://pypi.org/project/piazza-api/
https://ieeexplore.ieee.org/abstract/document/8816736
https://ieeexplore.ieee.org/abstract/document/8816736
https://ieeexplore.ieee.org/abstract/document/8816736
https://dl.acm.org/doi/abs/10.1145/3338906.3341186?casa_token=agVjC3YTCb0AAAAA:ISk8p3xNECbZagOJSQeTExTIlJherOfC2xAhdlNCz1l1QIt-bpE-HHi3N37Kcp6IDj6El-ju1uK1
https://dl.acm.org/doi/abs/10.1145/3338906.3341186?casa_token=agVjC3YTCb0AAAAA:ISk8p3xNECbZagOJSQeTExTIlJherOfC2xAhdlNCz1l1QIt-bpE-HHi3N37Kcp6IDj6El-ju1uK1
https://dl.acm.org/doi/abs/10.1145/3338906.3341186?casa_token=agVjC3YTCb0AAAAA:ISk8p3xNECbZagOJSQeTExTIlJherOfC2xAhdlNCz1l1QIt-bpE-HHi3N37Kcp6IDj6El-ju1uK1
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/16cb30b4b92fd4989b8619a61752a2387c6dd474.pdf

Damiano Distante, Alejandro Fernandez, Luigi Cerulo,
and Aaron Visaggio. 2015. Enhancing online dis-
cussion forums with topic-driven content search and
assisted posting. In Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management: 6th
International Joint Conference, IC3K 2014, Rome,
Italy, October 21-24, 2014, Revised Selected Papers
6, pages 161–180. Springer.

Junaid Rashid, Syed Muhammad Adnan Shah, and Aun
Irtaza. 2020. An efficient topic modeling approach
for text mining and information retrieval through k-
means clustering. Mehran University Research Jour-
nal Of Engineering Technology, 39(1):213–222.

Viljami Venekoski, Samir Puuska, and Jouko Vankka.
2016. Vector space representations of documents in
classifying finnish social media texts. In Information
and Software Technologies: 22nd International Con-
ference, ICIST 2016, Druskininkai, Lithuania, Oc-
tober 13-15, 2016, Proceedings 22, pages 525–535.
Springer.

Xiaojun Wan and Tianming Wang. 2016. Automatic
labeling of topic models using text summaries. pages
2297–2305.

10

https://link.springer.com/chapter/10.1007/978-3-319-25840-9_11
https://link.springer.com/chapter/10.1007/978-3-319-25840-9_11
https://link.springer.com/chapter/10.1007/978-3-319-25840-9_11
https://search.informit.org/doi/10.3316/informit.949374222927473
https://search.informit.org/doi/10.3316/informit.949374222927473
https://search.informit.org/doi/10.3316/informit.949374222927473
https://link.springer.com/chapter/10.1007/978-3-319-46254-7_42
https://link.springer.com/chapter/10.1007/978-3-319-46254-7_42
https://doi.org/10.18653/v1/P16-1217
https://doi.org/10.18653/v1/P16-1217

